Guaranteed sparse signal recovery with highly coherent sensing matrices

نویسندگان

  • Guangliang Chen
  • Atul Divekar
  • Deanna Needell
چکیده

Compressive sensing is a methodology for the reconstruction of sparse or compressible signals using far fewer samples than required by the Nyquist criterion. However, many of the results in compressive sensing concern random sampling matrices such as Gaussian and Bernoulli matrices. In common physically feasible signal acquisition and reconstruction scenarios such as superresolution of images, the sensing matrix has a non-random structure with highly correlated columns. Here we present a compressive sensing recovery algorithm, called Partial Inversion (PartInv), that shows better performance than existing greedy methods for random matrices, and is especially suitable for matrices that have subsets of highly correlated columns. We provide theoretical justification as well as empirical comparisons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clarify Some Issues on the Sparse Bayesian Learning for Sparse Signal Recovery

Sparse Bayesian learning (SBL) is an important family of algorithms for sparse signal recovery and compressed sensing. It has shown superior recovery performance in challenging practical problems, such as highly underdetermined inverse problems, recovering signals with less sparsity, recovering signals based on highly coherent measuring/sensing/dictionary matrices, and recovering signals with r...

متن کامل

Stability Analysis of LASSO and Dantzig Selector via Constrained Minimal Singular Value of Gaussian Sensing Matrices

In this paper, we introduce a new framework for interpreting the existing theoretical stability results of sparse signal recovery algorithms in practical terms. Our framework is built on the theory of constrained minimal singular values of Gaussian sensing matrices. Adopting our framework, we study the stability of two algorithms, namely LASSO and Dantzig selector. We demonstrate that for a giv...

متن کامل

Nonuniform Sparse Recovery with Gaussian Matrices

Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information. Efficient recovery methods such as l1-minimization find the sparsest solution to certain systems of equations. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we f...

متن کامل

Nonuniform Sparse Recovery with Subgaussian Matrices

Compressive sensing predicts that sufficiently sparse vectors can be recovered from highly incomplete information using efficient recovery methods such as `1-minimization. Random matrices have become a popular choice for the measurement matrix. Indeed, near-optimal uniform recovery results have been shown for such matrices. In this note we focus on nonuniform recovery using subgaussian random m...

متن کامل

Sure independence screening and compressed random sensing

Compressed sensing is a very powerful and popular tool for sparse recovery of high dimensional signals. Random sensing matrices are often employed in compressed sensing. In this paper we introduce a new method named aggressive betting using sure independence screening for sparse noiseless signal recovery. The proposal exploits the randomness structure of random sensing matrices to greatly boost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1311.0314  شماره 

صفحات  -

تاریخ انتشار 2013